Variable-step truncation error estimates for Runge-Kutta methods of order 4 or less

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods

We derive a posteriori error estimates, which exhibit optimal global order, for a class of time stepping methods of any order that include Runge–Kutta Collocation (RK-C) methods and the continuous Galerkin (cG) method for linear and nonlinear stiff ODEs and parabolic PDEs. The key ingredients in deriving these bounds are appropriate one-degree higher continuous reconstructions of the approximat...

متن کامل

High Order Explicit Two - Step Runge - Kutta

In this paper we study a class of explicit pseudo two-step Runge-Kutta methods (EPTRK methods) with additional weights v. These methods are especially designed for parallel computers. We study s-stage methods with local stage order s and local step order s + 2 and derive a suucient condition for global convergence order s+2 for xed step sizes. Numerical experiments with 4-and 5-stage methods sh...

متن کامل

High Order Runge { Kutta Methods on Manifolds

This paper presents a family of Runge{Kutta type integration schemes of arbitrarily high order for di erential equations evolving on manifolds. We prove that any classical Runge{Kutta method can be turned into an invariant method of the same order on a general homogeneous manifold, and present a family of algorithms that are relatively simple to implement.

متن کامل

On Error Estimation In General Linear Methods: Runge Kutta (Rk) And Almost Runge-Kutta (Ark) Methods

Abstract— General linear methods (GLM) apply to a large family of numerical methods for ordinary differential equations, with RungeKutta (RK) and Almost Runge-Kutta (ARK) methods as two out of a number of special cases. In this paper, we have investigated the efficacy of Richardson extrapolation (RE) technique as a means of obtaining viable and acceptable estimates of the local truncation error...

متن کامل

High Order Multisymplectic Runge-Kutta Methods

We study the spatial semidiscretizations obtained by applying Runge–Kutta (RK) and partitioned Runge–Kutta (PRK) methods to multisymplectic Hamiltonian partial differential equations. These methods can be regarded as multisymplectic hp-finite element methods for wave equations. All the methods we consider are multisymplectic; we determine their properties with regard to existence of solutions, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1972

ISSN: 0022-247X

DOI: 10.1016/0022-247x(72)90187-4